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TEBORY OF GROUND VIBRATIONS OF A TWO-BLATE HELICOPTER
ROTCOR ON ANIBCTROFPIC FLEXIBIE SUPPORTS S ——

By Robert P. Colemsn and frmold M. Feingold
SUMMARY

An extonsion of previous work on the theory of self-excited
mechanical oscillations of hinged robtor bledes has been mals.
Previously published papera cover the ceass of three or more robor
blades on elestic supports (such as landing gear) having either equal
or unequal support stiffnese in diffeorent directions end the case of
one or two blade rotora on supporits having equal stiffnese in all
horizontel dirsctions. Tho missing case of one or two bladed on’
unequal supports hae been treated.

The muthemstbtleal treaizient of this cess iz considerably more
complicated than tie other cases because of the vccurronce of differ-
entisl equations with pericdic coefficients. The cheracteristic
freguencies ere obtalned from en infinite-order determinent.
Recurrence relatlons and convergence factors axre used In :t‘ind.ing the
roots of theo iInfinite dcterminant.

The results show the exlstencs of ranges of rotationsl speed at
which inetability occurs (changed comswhat in position and sxtont)
gimiler to those possessed by the two-blade rotor on equal supports.
In addition, the existence of an infinite number of instzbility
rangss whlch occurred at low rotor spseds and which did not cccur
iIn the cases previously treated is shown. .

Simplifications cccur in the ansalysis for the special cases of
infinite and zexro stiffness in one of the axes. The cess of infinite
stiffness in omse axis is also of speclial interest becsuse it is
mathematically equivalent to a counterrotating rotor system. A design
chert for finding the position of the principal self-excited insta-
bility »ange for the case of infinite support stiffunéss in one direction
is included for the cconvenlence of designers. It 18 expocted that |
designers will be able to cobtain sufficiently accurate information by
consldering only the cases of infinite and zero support stiffnsss along
one direction togsther witk the cases treated proviously.
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TNTRODUCTTON i

It is known that rotating-wing alrcraft mey experience violent
vibrations while the rotcr is turning =snd the aircraft ie on the
ground. It has been found that these vibrations can be expluinod
without consldering asrodynemic effects and that they are dus to
mechanical coupling betwsen horizontal hub dlsplacemonts and blade
cscillations In the plane of rotation. A theoretical anslysis of
this vibrabion problem is glven in references 1 and 2. Referenco 1
deals with robors having three or more equal blades on general
supports and reference 2 deals with two-blade rotors on supports
having the sameo stiffness in all dlirections.

Although in actual two-blade rotary-wing alrcraft, the stiffnoss
of the supvorts along the longltudinel dirsction is certainly
difforsnt from the latersl stiffness; the equallty of the stiffnesses
was assumed in reference 2 becsuse 1t permitted the mathemmtical )
simplification of deallng with differential equations having constent -
coofficlents end it was belisved that & theory employing such an
agsumption would be sufficient to indlicate the nature of the most
viclent types of ground Instebllitby.

The present paper givee & theoretical Investigation of the
general case of a two-blade rotor mounted upon supports of wmegqual
stiffness along the two stationary principel axes. It thus -
generalizes the problem of reference 2, and rounds out lhe studles
of ground resanance begun in reference l. A8 was shown in referonce 2,
a two-blade rotor posmsesses different dynamic properties along and ’
normal to the line of the blados. Equations of motion with constent -
coefficients for the prodblem trested in reference 2 could be ocbtained
by using a coordinate system rotating with the rotor. This procedureo
succesded bocause the surports wore assumed isotropic (equal
stiffness in all directions). When the supports are enisotropic,
however, it is impossible to avold the appearance ofperiodlc cousf=
ficients in the equationas of motion.

Tre present mothod of solving the differenitial equations of
notion follows closely the procoss employed In referenco 3 for a
vibration problem in two degrees of ficedcmn. The form of solution
le oxpressed by an exponential factor timeos a complex Fourier serios.
Substlitution of the formal solution into the equations of motion
yielde an infinito set of aslpcbraic ogquatlions and en Infinite-order
determinant for the detorminstion of the Fourlor coefficionte and tho
charactoriatic froquencies. The subsequont snalysis 1s concerned with
mothods of finding the roots of the infinito doborminant.
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Because the msthods hereln employed mey slso be useful in
other rotoi problems, particularly in those involving foward.-i‘light
offects, the mathematical emalysis is presented in some detail.

It 1s expecheod that designers will be sble to obtein sufficiently
accurate information by considering only the cases of infinifte ov zero
support ‘stiffness along one dircction together with the cases of
references 1 and 2. In order to avoid the neceselty for oxtensive
celculations, & design-chart is included giving the location of the
principal self-excitod-instability venge for the case of infintte
support stiffness in one direction.

TERIVATION OF THE EQUATIONS OF MOTTON

The syubols used herein are defined in sppendixz A.

The equations of motion are obizined from Legrenge's equations
and from the expressions for kinetic and potentisl onergy. Four
degrees of freedom of the rotor system sre considered: componentis of
deflection of the rotor hub in the plane of rotabion, ‘and hinge
deflections of the two rotor blasdes about thoir vertlcal ninges. AlL
motions are thus assumed to occur in the plane of tne rotéor. The
rotor is ussumed to rotate et a constent angular velocity w. The
analysis can be applied to rotors witnout hinges by assuming en
effective spring stiffness and hinge position to repreaenu tne elastic
deflection of theo blaede. T e

'I'né pertinen'b paysical parametors ere:

a redial position qi‘,vertical,hi_ng_el . L

b distunce from vortical hinge‘lto center of mass o'f.bl_aqé - _
Iy, masslof rotor blade

m effective mass of rotor supports _

T radius of pgyration of blade sbout cénter of mass

Ky» ‘.5, spring constentes of the rotor supports along tho
X- and Y-directions, respoctively

I".B spring constent of hinge self-contering spring
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Let the origin of the X,Y¥-coordinate system be placed at the x
undisturbed position of the rotor hub. At time + equal to O, the
line through the blade hinges and rotor hub 18 assumed parallel to
the X-axis. After a time interval +, let—the rotor hud deflection
be z eand hinge deflectians be B3 and Bp, respectively, where z
ls the complex position coordinate measured in a coordinate system
rotating with the rotor. (See fig. 1.} Then the positions of the
centers of masg of the two blades, as measured in Pized cocordinates,
will be, respectively,
zy = (z + 8 + beiBl) eiwb _
',- ST R TLT o (1) - -
zp =z - a - polfa) glot ' I
Tae kinetic energy of the rotor system T csn be written es
-
1 j 2 2 3 .'ai ’
¢« 2 RN 4
L= [ D+ +
T = zm, ,Elzl+ Zpip + T (m B]) +<cn Bg)JJ
1 . - - .
5oz + toz)(E - d0Z) - {2) ) -
TotLOLENL LT L 4

The first term in equetion (2) represents the kinetic energy of the
rotor blades, including the enorgy due to rotation, and the second ’
term 18 the contribution of the rotor hub.

Upon expanding oquation (1) into power series in By end Bp
(only small deflections from equilibrium being coneidered.) and
substituting into equetion {2), there is cbtained

T n-QJM(é + i0z)(3 -~ iwF)

+~%mb —(Bl - Bg)(id)ebz - 10PbE + abz + wbi)

5 (81 - Po)(bi} + wbz + abd - i)

4+ (12 4 ra)(é]_2 + B0) - amaf (B2 + 822>-l (3)

wvhere only the terms that are quadratic in the variables have heen -
ratained, end M represents the total mess of the wrotor system.

|

)

L
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The potential energy of the system V is given by

L B2 2) E _
== ;31 +I32 +--2-_zz

AK /o 2iwt , -2 -Rit\
-T(ze LT 4 z< ‘3) (&)

where K 1is the aversge stiffness end AK is = measure of the
difference of the two principal stiffnesses; that is,
K, L E
K = .._Z_i'_,__?c_
2

AK=§X’K1 .
2

As in references 1 snd 2, simplificatione in the ansalysis are
introduced by replacing the hings variables 87 and Bs by the
new variables €g and 63 _ .

9 =:%(Bl + 52)
01 =361 - 82)

In terms of these new variables the expressioms (3) and (L)
becars, respectively,

. r
_b{ . o — . = 2
T ——é—(z + iz} (% - 10Z) + ™, L(z - icm.)(iel - c.uG])

- {z + i(DZ)(iél +c091> + G +-£§->(é02 + éle)
' b

- (6,2 + ele):i (5)



(6)

6 R _
end : oo T - _ - 1_':—
V= -g— 2% + ;K% @02. + 912) . !EIQ_ (Zeeziwt . 528-2wt)

By use of the Lagrangian form of the equations of motion
= afy ¢ N _
at\ 9x 3x * 555 o

the following equations of motion for the rotor system are
finally obtained:

By + (03 +A2) 8g = O

(D + iw)%2 + (D + 10)%8, +-§{§ z - %Ee'aﬂ”t =0

(D - )22 - 1u(D - iw)%, +.I,;1§.z 3 _@AME 20210t _ o

. ' 2
(D + )%z - (D - 10)%2 + 212 +-=->@2 +Aw® 4 p Yo, =0
O TR x 1

vwheyre the notation

has been usoed, asnd the following combinations of the origlnal
parameter3d have been Introduced:

Al“ 2
b{l +£.2.)
B2
X H
= B _
'A'f:‘

')
21 + I
mb( b?)

(7)

(8}

(9)

(10)

i
ki

§
K

e
L

“,.

[ 3

bii 8
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Equaticn (7) can be solved independently of the others since
it is an equation in &y alone. The equivalent equation appesared
also in references 1 snd 2, and its solution represents in-phase motion
of the blades with no resultant reaction (except torsion) at the rotor
hub. This motion will not be furiher considered hersin.

The problem is thus resolved into the solution of the three
simltensous equetions (8) to (10). It will be noted that the terms
with periodic coeificients in equations (8) and (9) disappear

if 5; =0, thatis, if Ky = Xy. Equations (8) and (9) are thus
roduced to the problem treauted in reference (2).

FORM OF SOLUTION OF EQUATIONS OF MOTION

The equations of motion (equationa (8) to (10)) are similar in
mathemetical properties to Mathieu's equation, which occurs in the
analysis of vibrating systems of onc degree of Ireedom with variable =
elasticity. (See reference 4.} A generalized form of Mathieu's
equation was solved analyticslly by Eill. (See reference 5,
pp. 413-817.) An extension of Eill's metaod has been epplied in
reference 3 to a problem involving two degrees of freedom, snd a
further development of the method of reference 3 is followed in the
present paper.

Equetions (8) to (10) comstitute a system of linear differentiel
equations with periodic coefficients. Three second-order equetions
possess six linearly independent solutions that, according to the
Floquet theory (referenco 5, p. 4%12), are of the form of en =~
exponential factor times a periodic function of Tirme. Particuleaxr
golutions are of the form A .

—y

- oMatp(y) . o~1Baliy(y)

=
|

= ol®aty(y) 4 o 10atp(y) (11)

N

1
I

o, = o28fR(4) + o7 0RYR(x)

—
where w, 18 known as the cheracteristic exponent, and P(t), a(t),
end R(t) are periodic functions of periocd 7/w.
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Since P(t), Q(t), and R(t) are periodic functions of t,
they can be represented by complex Fourier series, and equations (11)
bocoms - i

f}__ A e(zw)n AN 7 o (2Uodg )1t

OO ~ 00

‘;E=§ -Bz o(2lvkna )it | § i o-(2Wdalit > (14

- 0O

-2 )
o _:T‘ o e(EZMna)i‘b . 2 5 e-(zma)it
t A:EF' ’ 0 ' |

where Ay, BZ’ end. CZ are complex constants.

Equations (11) and (12) show that, when the rotor system is
steble and w, is real, the motion not only is not simple harmonic

' as wag the case in referencos 1 and 2, but, in general, is not even

pericdic. The motion can be sald to comsist of a fundamental

froquency g plue "harmonics® of frequency w, + 2lw wiere 1 18

any integer. From eguations (12) it is soen that the valus of wg .
is not uniguely dotermineto, since g + 2k also setisfles
equations ?12). (The imaginary part of w, is definite, howovor.)
It can be shown furthermore, that, corresponding to each value

of wy, -wa 1is alsc a solution. Only those three values of Wg,

for which the real parts lie hetwoen 0 and ® need therefors dbe
congidered. Thesse valuss will be referred to hereinaftor as the three
"principal"” values of .. Theso values of w, differing from the
principal value by 2w, or having opposite sign, will be reforved
to as "harmonics™ of the corresponding principal vzlue.

Since 2z has boen defined as® a position coordinate in a
rotating frame of reference, the values of wy cen be interpreted

as the natural frequencioes of the rotor system in rotating coordinatos.

SOLUTION OF EQUATIONS OF MOTION

Detorminantal Egquation

If the formal solution (equation (12); i combined with the
equations of motion (equations (8) to (10)), and the coefficients of __

H
i
144
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each exponentlial time fector is separately equated to zsro, an
infinite set of homogeneous ecustions 1s obtained. These equations
c=n be separzted intoc two Independent sets. Fach equation of ome

set is the conjugate of en equation of the other set, =and only ome

set need be considered. Thus

l

|
L

r

[0 + (21 + l)w}z} A, -%K—BZ_,_J_

X
M

nifo, + (22 + 1w]® ¢, =0 (13)

' i2 I
[@a + (21 - Lo} } By - i

1

+

nifwg + (21 - 1) 2 ¢, =0 ' T

~[@g+(21 r1)al2 4 wy + (21 - 1)o}%B
¢ 1 1

2
+ Qié + fé-)!z(wa + 27.0.3)2 +A1u>2 +A2]CZ =0 (15)

whers 1 <takes on all iIntegrsl velues from - 1o o.

In order that the values of A;, Bz, snd C; not equal
zoro, the determinant of the coofficlents of A3, By, and C3

nust be zero. This de‘cerrainantal squation 1is -
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sy, 8,3 O 0 0 0 0 0 o ...
. 3-3,_1'_ &._3,_3 a_3,~2 0 0 O O O 0 - .
0__ &.2,-3 3-_2,-‘_2 a‘-é,—l 0 ¢ 0 0‘ o .. .
O 0 ay pe;,; aj0 O 0 o o ...
o-- 0 O 8,1 @, &, O 0 0 ..
0 0O Q 0 al'o al,l &1,2 O: 0 . . .___
0 0 0 o} o] &2,1 52,2 &2,3 0 « .
s} 0 0 ¢} ] o 0 alh3 a;_hh. .
= Mwg) =0 (26) o
where ' v
T Aw= + A
oy o= -la KM 80,0 = -1 +
-7 (wa e 303)2 (.Da
- e + Y2
a"h’)‘3 - A3 e.(),...L = wa
2
= P - 3
-3,k (wa o 81,0 =43 _
Aa? + A -
& = ] 4+ L 2 a R A /M
"3.""3 (wa - %)2 l)l ((Da + (1.))2 M
S

E
[ I
FL
™
(I
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. a =(%a - o = DEM
-3,-2  \w, - 1,2 (wg +o)2

- DKM
& o .3 A3 #2,1 (o3g + @)2
a_o Q=-l+——i———IrM a22=-l+-————‘————-K/I'i B
=% 2t o . (% - m)g Ed ((Da + w)p_ o o —mmia
_ _AKM :
a - =
"2l (i, - ®)2 ®2,3 43
2
. . _AK/M o =f22r®
1,2 7 (o, - ®)2 T 32 \g, + 2,
: Ay 02 + A
8.1,-1 = -1+ —-—Iﬂ-\l—é & = -1 +—l——-——% -
) ((,L)a - ) 3,3 (t.ua, + 2m)
_ _{og + 30\2
. 8.1,0 T4y 23,4 © 0y + 20,
. . _fwg ~ o 2 = A
0,-1 ~ 4,3 703 - .
_ KM
all-,)-l- = -1 + IRY
(wa + Zw)

Toe determinant has been somewhat simplified by mmltiplying and
dividing the rows and columms by various qusntities, =nd tre

2(1 + rg,fb‘")

Let this infinito determinant be A{w,). The problem conaiets o
in solving tae equation A(ma) =0 for its roots w,. These roots

will bs infinite in nvmber, consisting of tae three principal valuves
of w,. plus ail their harmonics. Tre values c:‘:" oz /) K/M, as a
f‘unc'bion of w/ \/‘ EM, are seen to de'oend only on tne v-a.lues of the

paramster A3 kas been substituted for its eguivelent
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. A )
tiree nondimensional parameters Al ,7-/2—,-M~, and. A3, and the
stiffnees ratio paremester AOK/XK.

4 determinant of infinite order has meaning only insofar as
it is defined =8 the limlt of s determinant of finlte order.
Define &n(w,) as the determinant of order 6m -3  formed frem =

square arvey of A(w,) centered on the term -1 + w2 4 Ap
L. w,

This texrm, wiich originelly weas associated with C, in equation (15},

will be referred to Lereinafter a8 the "origin" of the infinite
determinant A{w,). The cholco of tnis term as center of A lws) is

purely erbltrsry, and it was sslected solely for reasoms of syrmetry.
Taus

Hag} = lim Ag(og) :
n..} @ . (17)

Tho 1limfting veluee of the roots of the equation

- H(e,) =0
a8 n becomes infinite will pe tho values of the roots of the
eguation :

Alwg) =0

The mothod of calculating the roots of Alwy) = 0, by
successively calculating the roots of #nz{wy) = 0 for larger
values of n, is entirely too tedious. Instead, the method of
reference 3 will be followed. This method Involvsa theo calculation
of the walue of A{wn) for several specified values of Wy . The

roots of &flwg) = O can then be obtalned from a trigonometric
equation involving the roots snd the calculated values of Alwy).

Auxiliary Determinants and Recurience Relatlons

for Calculating A{wg)

Before the trigonometric equation 18 derlved, it 1s convenlent
to have a systematlc numericel procedure for dstermining the value
of Alwg). As n beccmes infinite, the terms of An{w,) oxtend to
infinity both above end below the origin. By expanding 4,(wa) in

4

A
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terms of the elements of the columm containing the origin, it cen
be expressed in terms of auxiliaxry determinants that extend to
infinity in only one direction. Recurrence relatlions cen then be
obtained that give the value of these auxlliary determinsnts.

The auxilisry determinants ars minors of %(ma_) and are
defined =as follows:

Cphlew,)  determinent of ovder 3n -2 consisting of the terms
below and to the right of the-origin; thet is,
determinsnt having %;irst row and columm boeginning

M ?

with term -1 +

(wg + @)2

Do{wg)  determinent of order 3n - 3 formed from Cp(ws) by
onitting last row end colum

E(w,) determinent of order 3n - ¥ formed from D.{(w,) by '
omitting last row end columm ' D

L(®,) determinant of oxder 3n - 3 formed from Cp{wa) by
omitting first row and column ' G

M (o) determinent of order 3n - 4% formed from I (w,) by
omitting last row and columm - : il

Np(wg)  determinent of order 3n - 5 formed from My(w,) by

omitting last row and coluzm Lo -

The following threes determinents will alsc be needed:

Gplwy)  determinent of order 3n - 4 formed from I (wz) by
omitting first row and column :

Hn(wg)  determinent of order 3n - 5 formed from Go(w,} by
omnitting last row and column '

I (wy) determinent of order 3u - 6 formed from E o) Dby
omitting last row ond colurm

Determinante similar to the foregoing can be formed in the
sems ranner from the upper helf of A,(w,)}. Denote thess determi-
nants by the subscrint -n. instevad of n. It is seen, howover, that
their valuss can be obtained from the velues of the determinants o
already defined from the lower half of A,(w,;), by merely

replacing W, wWith -w, (for emesmplo, C_plw,) = Ch(-w.)).



Expanding A (wsy) in terms of the elemente of the column containing the origin gives

Me? + A I> AN Y '
no) - (1, 22 ) ¢ o) 42N 1y oy [ ) (o) Syl
N 2/ N/ \ o, _l
(18)
The auxilisry determinante C (), Dy(m,), andl En(%) satisfy the following.
recwrronce relations (obtained by expanding each 1in terms of the elements of 1te last row):

;. o2
o o + (2a - 1hn
o) = $-1 - A B (o
o) T En& + {2n - l)m]e Pulta) - 43 9, + (20 - 2)a| ol
[ n - -2
: AlmE +A2 wy + (20 - 3o
) = ¢-~1 ~ - E (o) -4 - (19)
O T P [ M s BT | Gl [
. 2
En(fna) = 91+ i 227 Cn~1(‘“a) - (/M) Dn—l(md.) '
[cna+(2n—3)a>_j E»a-p-(&x-?,)af

The determinants Lo{eg), M(mo), e0d N (o), end aiso the system G (a,)," E,(o,),
at I (o,) satisfy the same recurrence relations as Chlwg), Dylay), end B (my,),
respectively. _

T

H¥9TT ‘Ol NI VOVR
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.The velues of these nine deberminents can be found from the
recurrence relations (ecuations (13)) and the following initial

values, obteined directly from equation (16):
- T

KM

(g + m)2

-1+

¢ 1(“’5.)

-
Eq(ws) = 1+ /M J | tax/m)2

(@g + ©)% (@g, + w)H

_]_4.____51'_1?_1.._..

kN?.(f"“’a)

(w, + w)? | - L
' 2 2
Ma(wn) = |1 - KU 1. Ayw® +-_2 -4 by + ® (20)
2 (q)a + m)e Qba + 20))2 > .+ o
Ajo® + A
Ep(w,) = - — o _
(@a, + @)= e
N 2
GQ(U:’g_) = E_ —A—lu&_lia_ - K[M - A. wn + 2B
(wg + 20)2 (g + 30)2 .+ 20
) _/

By use of the initial conditions (equations (20)), the
recurrence relations (ecuations (19)), and ecuation (i8) the
value of A (a) ) can be calculated. The value of AMwy) will

then be the lim:.tin,?, value of Aq(”a. 88 n becames infinite.

The Behavior of Ay(w,) for Lerge Values of n

So far it has been tacitly assumed that the determinant A(ma) 3

as defined in eeuations (1) and (17), is convergent, and further,
that it remnins a function of . in the limit a8 n becomes

infinite; that is, it is not :Uienticall,; equal to zero, indopendent
of the value of ®,. It will now be shown that the function %(m )

does become zero in the limit, independent of @y, but that wien °

A,(w,) is divided by an sppropriate fumction of n, & new function =

Fulw,) will be obtained wiick will be convergert and remain an
unambiguous function of w, in the limit



ne—

The derivation of the appropriate fun¢tion by which to
divide Ap(w,) evidently depends upon the behavior of An(w,)

a8 n becomes very large. As n becomes infinite, the
recurrence relations (equatians (19)) become

0y = D - AgBy - | (2_155
D, = -Fn -A3c; -1 : | (21b)
By = ~Cp1 _ (21c)

1=

with ilentical equations for I,, M,, end N, and for Gy, &Hp,

and TI,. Equations (21) are re=dily solveble since they comstitute
s system of dlfference eguations with constent coefflclents. They
are satisfied by solutions of the form

Cy = Cok'n _ (22a)

witere C, 18 some arbltrery constent and k 18 a constant to be
determined. From equations (2lc) and (21b), respectively,

E, = -C L (22v)

and . - e e e e . - .

= ¢ -1 -
D, = Ot - Agcqt

= C (1 Aj)kn'l ) | (.EEC)

Cambining equations (22&), (22b), and (22c) with equaticn {21e)
and dividing through by C kP-1 gives

=2A; - 1 ' (23

Thus, by use of equaticn (18), it 1s seen that for large values of n,

An.wh) varies as kZn. 8ince by definition A3 must have a value

between O and 1/2, k2 mmst lie botween O and 1. Ehua, in the l_miu

m & (w,) =

na»®
independent of w,.

gt
LR S

Ea—,

P

v 1
o
| B

3

i
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Consider the function

The equation Fn(cna) = 0 will obviously have the same roots
for @, as does A, (®,) =0. The function Fn(w,) has the _

advantage, however, as 1s seen fram the preceding discussion, of
remaining an wmambiguous function of wy in the limit as n

becomes infinite. Define this limit sas

it

lim Fp(es)
n-> o

F(®a)

n-s ® ko0 . wo -

The primeYry problem cen now be redefinsd ess the problem of
determining the roots, infinite in nurmber and consisting

of Wa s ®ag and. ‘”‘a3 end all thelr harmonics, of the equation

Flag) =0 (25)

Evaluation of Roots of Eguation(29)

The following trigonametric expression for F(m&) will now
be derived: o -

P

= (28)
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The function F(wg) 1s seen from equation (24) and
equations (16) to be periodic of period 2, +to have roots

+(wa, # 280), (wa, * 2sw), end *QP&3 + 2sw), where s 18 any
integer, to have sscond—order poles at wg = +2sw, and to have
fourth—order poles et w, = +(2s + l)o. Liouville's function

theorsm states that a function of a complex variable (in this
case, wa) that is analytlc everywhere in the complex plane,
including the region ot infinity, must be a constent, It will be
shown that F(w,) 1s finite at infinity (except if w, procesds

to infinity along the real axis). If the poles along the real
axis could be eliminated by forming a suiteble function of F(wg),

without at the same time introducing new poles, then that function,
by Licuville's theorem, must be a constant.

Such a funotion of F(wg), which is snalytic everywhere in

the complex plane, is
wadS) A
._i_ ! 2(?,é - gin 263524)
i L 2m 20
J=1

where Wy,, ®ags end mas are the three principal veluos of wg.

The function J(w,) 1is therofore a constent. The value of J{w)
found by making w, spproach infinity along the imaginery axis l1s

_J(ah)

I(w,) = Fle)

vhore ¥F(ew) is the value of F(w,), =8 w, bscomes infinite.

The value of ¥(w) cen bo found bty letting @,>w in An(ig)
end then letting n-> c. From the form of &y(e) 1t follows that

Ayl = Npple) = = Cp o)

The recurronce rolations defining C,(e) aro the semes &s cquations (e1).

Tho expressions I, and E, may be " olirdnatod from eqaaticna (21},

which pivos S

Co = ~(1- 2830051

(L

1
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The initial conditions (equations (20)) reduce to Cl -1, from
which 1t follows immedistely that

Bnlea) = - (1 - 2Bg)™
-
from equation (23). Thersfors . o
Plo) = 1tm 22 L gy KL _L (28)
N oo n—»e 20K

Equations (27) end (28) immediately give equation (26).

After equation (26) has been cbiained, the problem of
determining Bgys Wags snd a)&3 13y be considsred theoretically

corplete, for eguetion (26) is ree.lly sn identlty in wg. Suppose

thut wy 1S assigned any spevific value in equation (26) and F(Jaa)

iz computed to a certain degree of accurascy. If these computations
are made for two more values of a,, all different, eguation (26)

will have ylelded three equations in tne three wnkncvns Wg s me?: o

and ‘Da3 These equations can then be solved for the p'r‘incipa.l

valucs of Wy. Any degres of accuracy may be achleved by carrying
out the camutotions for. Fwg) to a sufficiently large velue of n.

The foregoing procedure cen be systemotized by rewriting
equation (26) as ~ =L o

K(%s) Eﬁ Eme@ - sm2<%)%i>—‘
) | (e9)

= KF(ws) sme
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A convenient choilce Tor the three arbitrary values of Wy
is wg =0, ®, and /2.

The explicit definitions of K(0), X(1), and EK(1/2) then became L
FLaV) T b4
K(0) = -sin'( ai]) 8in2 ( ,;;2 ) gin? (_2—3)3) _
_ w1 T odl o]
E_:_(l) = _J; - sm2(23)1>;l L:L - sine%e—-}J 1 - 8in® 'E?’)__;)('-‘O)
y B “"3__.1 Jj e 21 {1 w33
K(1/2) = %‘—— 511'12(?‘:;] ‘;z- sine( ;D - sin® ai
The ecuations for evaluating K(0), K{1), and R(1/2) are
_ = '
1763 Ty,
K(0) = 1im | kF(w,) sin2<§f> cos)‘(ﬁ%]
Wy —>0 .
7, v -
(1) = iim kF(w&) sine(-a;% cos“(m&ﬂ > (31)
Cba—-—> {4+ B
' e e
K(1/2) = 1im wF (g, ) 51112(552) cos“(ﬁ)ji
Wy-—> w/2|__
e

Carrying out the limiting operations indicated in eguatioms (31),
and vsing tho eurilisry dstorminants C(d,), and sc forth,give



—
o) = 1tm )% |0 +420,50) - 9"‘3"’2%(0)%(0& l>
n--30 -'l-l-ﬂ)?(l - 2[‘1.3)2]1“1 J
i
| o2 ()
E(1) = lim s > (32)

x(1/2) = Uin
n

~

[ e ot o) o, G ) - gniE)

51 - aby)t

.,

where the quantities in braciots aro convenierntly repressntaed by I{(O)n, K(l)n,
and | ¥(1/2),, respectively. The quantibies E( ), are used in numericel camputations
a8 approximations to the functions X( ).

The formulas (32) for K(0), X(1), and K(1/2) oconverge slowly with increazing
n. The convergence can be spseded wp grently by meldng use of ‘the concept of
canvergence factors used in reference 3. A convergence Tactor Tor I )n 18 a function

of n spproaching the limit 1 as n becomen infinite, which, when mltiplied by X( ).,

g TT - ON NI VOVK

13
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gives an expresgion which converges rapidly with increasing values
). The detalls of the derivation of en

of n to ths valves of X(

appropriete convergence factor for K(0),
Convergence factors for X(1), and X(1/2), ere

appendix B.

will be found_ in

derived in a similar fachlon. The resultant expresgione are

k(0) =limi
_ l

2
) 2
- n - {72 —ﬁ'l A

bee

¥(1) = 1im
n—y o

X(1/2) = 1im
n—ya

X(0)_ sin® ~a

J=1
i (1) cos® ELVER
n 2

JRp—

n-1l

11

- e—

p .
K(1/2), cos #{q

2
L
(23 - 1)2> ]

f (33)

e

vherse - - e e

-
I

]

3t

T -~
] ?23 - 1)5
| J=t

—

(L -43) +470% +4p + 2A 302

Nk
D
]

o?(1 - 2A3)

For a given velue of n, the quenbtities in brackets are found

to be hotter approximations
E( ), &loms.

to the respoctive

valuss of X{ ) tren

The method of obtaining the values of w, may be summarized sa

follows:

by use of tho initial comditione (oquations (20)) end the

recurrence relations (oquations (1%)), the values of the determinenty
Cn(0), In(0), Gulew), Cple/2), C (-w/2), In(e/2), end Ly(-a/7)
cen be computed for incressing values of n.

of these values intoequations (33), end with tho use of equations (2

With the substitution

approximate valuea of X(0), X(1), end X(1/2) can bo camputed.

2},
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The process appears to be repidly comvergent with =n, es;pecia]_ly

for large values of ®/yX/M. The values of Wgy 5 oaae, end gy

can then be found from equations (31), the definitions of X(0),
R(1), =nd X(1/2).

Conditions for Stability

From equation (13) the condition for stability of the system

is seen to bz that all three values of Wy mist bo resal numbers.

If any ocne of them is camplex or puve Imaginary, then one of tue
terms in the solution (equations (11)) will increase indefinitely
with the tims, the mot.Lon tharefore ve ng unstable. This condition

2 o K0
implies that the expressitms gin K gin 3
an 2w

T
and sinQ(——é'-g) 2ll are real positive numbers less then or sgqual

to 1. The conditions for etebillty can be e@ressod. dirsctly in
terms of X(0), F(1), and E(1/2) by meens of their definitioms
(equations (30)). The thrce cquatione (30) are formmlly equivalent
to & single cubic equation

7y
:c3+bx'—+cx+d.=

Ty
the roots xy, ¥p, and X3 of which eve BME% end so forth,

and the coefficients b, c, and & of which are functioms
of K(0), E(1), and X(1/2) whero

ob = 4%(0) + Lk(1) - 83(3?;) -3
oe = -6K(0) - 2K(1) + BK(-:EL-) +1

]

& = K(0)
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After some manipulations involving the Descartes rule of signs, the
necessgary and sufficlent conditions for stabllity ~re found to be

-K(d) <1

(7N

4]

S1

o
U

(1)
S 8K(1/2) <1
- A = 18bcd ~ 4b3a + 22 - bed - 2733 2 0
The quantlity A is ﬁhe digeriminant of the cubic equatiorn.

SPECIAL CASES OF GEWSZTAL THEORY

Three special cesos of tne general theory aro of interest.
These cumsed are the cases for which one of tho principel stiffnesses

K, is respectivelv zero, equal, or Infinite in magnitude in comparison

with the second principal stiffness K.

Cage of Ky = Ky

The case of K, = Iy has beon tyreated in reference 2, If
Ky = By, the equations (8) to (10) reduce to the esuations of
ratference 2. In tuils spscisl cese, the motion of the rotor systenm
bocomes aimple hermonic, since all the coefficlemts R;, By,

and C; in equations (12) zre identically zero except Ay, Do,
and Cg. . _

Cage of KT =0

Thes special limiting case of Ky =0 18 of interest in

the case of a nylon of vhich the stiffness is negligible along
one princlpal directicn with interest centered on the fregquencies
involving the cther nrincipal stiffness. In the cass of

K, = 0, - the function K(1) as given by equetioms (32) becomss
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identically zero. This resulht ls also evident fram the original
definition of K(1) as given in equation (23), because one of
tie values of oy s say Waq s is of necessity equal to to. (It
will be recelled that @, is the frequency as measured in
rotating coordinates. TIn fixed coordinates it would be zero., )

It is wnossible to give much sirpler stablility criterions ior thism
caso beceuse there are only two K-functions, K(Q) and E(1/2),
and two values of ,, g, end Wans To be determined. The new

K-functions may bo defined as follows:

T .
sine& al) sin2<"&g> = -K(0)
b 20

: 1
A0, e 1+ 28(0) - 8K{=
Y, = cos J) cos‘(«—a% = SK(E)
- N 2w am 2
_ B

In texrms of Kl and 122, the oriterions for stebility bocame

ks
i}

i

0 £xp S 1 (36s)

0Sk < (35b)

V& + Bz S 1 (35)

Given the values of X; and R, the values of Woq and
W can be determined from equetions (33). A gzph of the relation

in equation (35) is given in Tigure 2 by meuns of which the real
vzlues of Gy end @y, CED be read off directly oncs Kj and Xp

are known.

A graph chowing the variation of X; endl X, with m/—V‘Kx/M,
for the typicel parsmeters Ay =0.1, A, =0, Ay =0.1, end
E, =0, is shown in figure 3. By use of figure 2 the values of tay
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and Wy, cen be cbtained. These vulues are shown in figure Ly .
plotted against w//E,/M. Calculetions are carried down - L
@ . . B . o
—==p== (,5. The general behavior below this espsed is
e ¢ ‘ P

discuesed in the section entitloed “General Behavior of Rotor
Syster. ae a Function of Rotor Speed."

Cage of Ky = co _ S

The formulas for the limiting case of Ky = o capnot bo
obtained convenlsntly from the general theory. Instead of cerrying .-
out ths Limiting process, it uppoars preferable to beyin by tveating
the problem as ane of only three degrecs of freedam (’cwo l'in,gr—
deflectlion coordinates and cne hub-pouition coordinate x ), end
by deoveloping the theory along lines similer to those used for ‘c.he
gonersl troatment. In this way & gystem of two simmltanscus equationse
with periodic coefficients is obhteined, with the varisbles 6

and x. These equationg ere solved in a mermor simllar to t.nat for
the general cese, the treatment heing eimpler, howsver, since the
solutlon has only two principal values of .

The dotells of the solution of the eguations of motion, toguther -
with the final formules for the K-functions, inclvding comvorgonce
fectors, are given in appondix C. It is found that the sonc <]

and K occur as for Ky = 0. The criterions for stability s .
oxactly the same ag those far Ky = 0, the conditiona of cquations {(36).
Figure 2 can also be used Ho detecrminc the veluos of w, from tho

valuag OF I‘l end K?. _ __t

A greph glving the veriation of Xy  and X, with '.40/4:{:;7-}? for :
the paremcters Al 0.1, A2=O, A3=O_, and Ky-—m is shown o

in figure 3. In figure 6 the values of %1/'\[151/}4 and ma,\/{;/h{
are shewn nlotted against o/ '\/—K;T 4.

DISCUSSION OF HESULTS
" Types of Imatability _ B L e me
Insta‘bility may occuit ag a result of tho viola.t,ion £ any one

of tho gtability criterions of equaticns (34). Violastion of w-mch R
condition ie asfdociated with a different typo of insteblliby, wiich
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would srow up differently in the motion of the rotor system.
Experiencs with computations indicates,howsver, that tfe critoriong
of most practical importence for helicopters are = - B -

v

A

1AV
o

-¥(0)

n
(o)

K(1)

Similerly, the imyortent criterions in the limiting caces of K, =20
and K, = o are
3

'\I:I+'\FKE<=1 S s

KlZo
Ko 2 O ‘:

If the condition 420 (ov 4% +4Kz $1) is violated,
the other conditions being satisfisd, then gy end Dpy wlll be

complex conjusates, and the rolor sysben will ezecute self-excited
vibrations at frocuencies, in goeneral, Ilncormensurete with the rotor
speed. (Higher harmonice will also be present.) This type of
instability will be roferred to herelnafter as a "gelf-exclted
vibration.® :

If the stability cendition -K(0) 20 (or K; £0) alone is
violated, then one of the values of g will be a pure imaginary
nmumber. FPhysically, the rotor system will execute self -excited
vibrations having a basic frequency, 28 seen in rotating coordinates,
of zero. This behavior is similar to the ordinary critical-speed
bsherior of a shaft. Frequencies at higher harmonics znwm will
also be present. This type of instability will be referred to as &
"gelf-axcited whirling." - R

The third stebility condition K(1) -—?O cannot be violated since
K(1) as given by equation (32) cannot be negative. Lowever, CK(1)
cen be exactly equal to zero. (A similar statement applies to Kp:)



n
8]

N:iCii TN No. 1184

At such & point, where the rotor system is on the bordor lins between -
8tabllity and instability, ono of the valves of we Wwill be egual

to tw. In fixed coordinates this resvult means that the rotor systom
will have a natural frequency equal to zero. The rotor system will,
therefore, bo in resonsnce with a steady force - a force of zero
frequency. The amplitude of the zero-fraquency term for the hub
motion in such a situation can be shown to be zZero, but the blades
will oscillate. Also, higher hermonic terms, notably the term of
frequency 2o (in nonrotating coordinstes), will chow up in tie &b
motior. This type of vibratilon, which is a resonance phcnomenon ond
not & self-excited vibration, will be called a "steedy-force resonsnce”
vibratio.

YFackh of the vibrations describod ~ self-excited vibrations,
golf-cxclted whirling, snd a steady-force roaonance vibration -~
appeared in the discussion of the two-blado rotor on ecqual supports
(roforenco 2); however, thoro thw mobticrs wore simwle hermonic, no
higher harmomics being present. _ . S

—_ General Behavior of Rotor System =8 a : : - T=

Functlon of Rotor Speed

Tae approximate location of the instabllity reglions can
vasily be found by oxamining the limiting caso of A3 = 0, that is,

the cese of zoro coupling bohweeon the blado and hub motions. For
simplicity, the discussion is slso rcstricted to the cese of fruc v
hinges (Ap =0) and Ky = . The K and K functioms becomo

- ) ST T E
LY
N of X /ix;;
Ky = sin (2 A:L) coa (az- 7
N F : (37)
W T E—;
N = 2{ - oo A
Ixe cos8 (2‘A1> ain QD \JIM
. ——
Eliminating the rotor speced @ Fram oqustions (37) gives -
_ K ' ‘;
- o Limm

ik

1]
'
L1
H
|
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Coneideied aB an equation in the vsrisbles Kl end Ko this

equation represents a siraight-lins segment (one of the lines in
Tig. 2) terminated by the K, and K, axes. The segment can bs

shown to be tangent to tae cuxve Jr:l + 4Bz = 1. As o dJecreases,

the represantative point rnoves up cond down the line segment, per‘f’orming
an Infinite number of svca oscillations es @ approzxches zero.
Whenover Ky =0, the roint is av & self-exclited-whirling speed.

The corresponiing speed 4s

~- ——— _ _ - e

A E M
28 + 1

where & Yepresents any positive integer. Thus a self—-excited'
vhirling will cccur when the rotor spsed is approximately equal to 1,
1/3, 1/5, 1/, and so forth of the natural freguency of the

nub ¥ K /M. Similarly it can be shown that there will be a steady-

force resonance vibratlion whenever the rotor specd 13 approximately
equal to 1/2, 1/4, 1/6, and so forth of the hub natural

frequency A/ KX/M. Finally self—excitoed vibrations will occur at
rotor speeds approximately equal to

14.:._‘;_/[\1 - . - - - : - - -~-.--. LECFIER
mz‘:s+l-fq;’xl . _ S Ty

Figure 7 shows the general pabttern of rusponse fraquoency
plotted agninst rotor spood Ffor a smell value of the mess-ratio
versmeter A-. Tho varisble wp/®w rathor then o \E /B has
heen plotted es ordinate to avoid crowding of the linos. Along the
norizontal parts of tas curves, blade motion prodominates over rylon
motion. Pylon motion nredominates clong the slanting parts.

Although the faregoing discusaion was agvolcped for the case
Ky = «, it is belioved to apply equzlly woll to the case
of Ky =0 and clso to tho genoral case of K # Ky 12 12 the rotar T
hub is considered to have two natural freoguoncies ﬂi‘l"z/lﬁ and - Ev/}i,
euch frocucncy having associated with it en irfinltec sst of instability
ronoe8 locatod at approximetely the speeds piven. . T e
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Comparison of Results for Different

Values of Ky/'Kx

Pigures & and 6 give the principal vclues of axJJE?M
plotted sgainst the rotor speed wA/Ky/M far Ey =0 ’
and K, = «, respectively, both calculated for the same sst
of parameters A,, Ap, =nd A 3+ The celculations have beer

=8 __ , X
carried dowvn to \ff"f_,-?i&_ = 0.4, The similarity botwsen the two curvee

is striking. So far es the calculations have beon carried, cach

system shows the presence of one sslf-excited-vibration instebillity

renge,;-cne self-sexcited-whirling instability renge, end one steedy-

force reeonence spsed A. If the celculations wsre carrled to lowor

valueg of o, further instability ranges and steady-force resonence

gpoeds. would appoar. o -
Yor comparison; the response frequencies of a two-blede rotar

on equal supports (Ky = Ey) foo the same set of paremoters is

ghown in figure 8. The fregyencies were celculated from the forrmla

in reference 2. Down to = 0.5, this chart is very eimilar to

vV E /M
figures 4 =nd 6. In addition it shows ane range of rotationzl speed
at which self-excited~vibration instability occurs, one rangs of . -

robztionsl speed at which self-exclted-whirling imstebility occurs,
and on® range of rotuticnal speed at wuich a steady-force resmeance
gspeed occurs. Figure 8§ diffexrs principelly from the figures for -
K.y # Ey 4n that it shows no further instability renges at low values
of w. - . - - - : - T

In refercnces 1l and 2 charts ars presented glving the locotion
of the Belf-sxcited-vibration instebllity ronge for various values
of the naremeters A,, A, and A;. A sinilar chert for the case _
of a two-blade rotor wlih K..’, = o ia given in figure 9. In veing
the chart, & straight line is drawn regresenting the variction
2 | B '
of —Z— with the furction —=————=, - The intersectioms of this :
K../M Em ) ey
line with the eppropriato A? curvee give the bogimming :md end

points of the instability range. The dmeshed line in figure O
illustrates tho msthod for the peremoters of figure €.

Sciio observation® concerning ths relative locaticm and extent
of tho vaerious instebility renges in figures 4, 6, s#nd 8 appeexr to be

- . JE— - e e oo
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zpplicable to a wide range of values of thes prrareters Al, Ao,
end A >. Thus the self-excited-vibretion instadility renge in the
cree of E, = Ky (fig. &), is wicer (and kence . tho vibration .

nrobzbly more severa) tian the corresponding ranges in the ceges
of Iy =0 and Ky =ow. (See figs. k and 6.} Also, tuis insta-
bliity renge occurs at lower rovor speeds in the cage of Ep =@
vhen it coos in the czses of Iy = Ky erd Ky = 0. The gelf-

excited-whirling instebillity rense le considerably narrower

Tor K, = o then it is for the Ky = K, case, and it is still
o

narrover in the Iiy =0 cn8s. .

In the general cese of Ky # Ky the locabion end extent of
the inatebility renges can bs Povnd fairly sccourctoly by considoring
the problem es the superposltion of two groblems, one of Fiading tho
significant rotor speceds mcferred to Yy K;?M ‘g8 roference fregquency
with K. essumed infinite and the other of finding the significent
rotor spoeds referred ta 1/1\:‘?/;:»; &8 ycforonce frequencey wWith XK
aggumed zero. Witah tia foregoing 'discussion as s guide,sufficiemtly
sccurate design infdormbtion cen be obteined withont extonslve '
crlenlations for escir velue of K:,-/I‘;x cncountercd in practlco.

_,

Lifact of Deamping —

Although tho sffust of damping has nobt boon exenined mathe-
nztically, because complicationa would bo introduced ir the snalyseis,
soveral infeorcncos irca tie dsmping investlgations in reforsnces 1
and 2 can probably be safely epplled to tho rotor-system studlos In
the prosent papor. The numerous instubility rangos occurring at low
rotor speeds, which axre vory nervow end yoprosont a mild type of -
instability, sro probsbliy campletoly elirninated by the prosonce of a
slisrt smount of dewmping in the rotor system. The primary solf-
exclied-vibration instebility range cuin probably be narrowsd and
climinated by introducing snificient damping into both tho robtor
eupports and the blsde hinges. ' S o

APEFLICATION TO DUAL ROTOES

It is sasily shown thet tie snslysis for the czdc of. Ky = o
arnlles also to the case of = counberroteting rotor system consisting
of two equal two-blade rotors revolving et equel specds and acting
eouslly upon tie s=me flexible uprber. The rolore may be on the same
shaft or on different suafts sc long as the nonrotating flexible
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member is the sems for both rotors. The supports, nioreover; may huve
unequal stiffness in the X- and in the Y-directions, provided tiat
the undeflected blade vositions make equal angles with a principal
stiiftuesy axis, : T

The proci cousists in showing that the energy oxpressions foir
the dual-rotating systom can be sgparatod into two independent mets
of terms, each of which is of the same form as for a single rotor
with K‘YT =ow. The resulting equatioans of motion will thus also ba

the sams.

The sepa.raﬁiqn is eccomplished by introducing new variables
go=d -
®1 7% (rp0s ®1nog)

. 1
So = 2 (BDPOE_ } eolwg) _ -

and

"L =% (Lyos * Olneg)

o © %(Boyos ¥ gonez)

where tho subscripte pos and neg refer to the 6'a defined for
the rotor turming in the vositive dlrection and for the rotar turndng
in theopposite direction, rospectively. The encrgy oxrpre3sions
bucome : . '

i 7;’_-145:‘2 +2ry Ee;’c@l oin wt + wg cos cnf)

R E ) 2l |

A \ -
+ %M.YQ + 2y LEY(T}J_ cos wi - Gn, ain uu) g (\33)

—

/ o N .~ f
L [T

- 2 2 -2 2 o 1.
V=2§2<5.1 + &, + 1y + g +-é3g:4+-§£yye

~
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vhere M is the tobal mass of the system (M = m + bmy).

From equetions (38) 1t iz seen thet & 18 coupled only
with x and n is coupled only with ¥. Eguations (38) yield
equationg of mobion of the ssme form as eq_u,_«.t"ons (C;) an'i (Cj)

The stebility properties for the dusl-rotating case are thus
exrctly the sarme =as In the casc of LJ = o Tor the s*ng,ls-‘ﬂotating
two-blade rotor. In particular, figurs 9 con be used to find the
location of the primury self-excited-vibration instsbility rangs.

The value of A3 for the dunl-rotating rotor is defined ' o
2y, L m

as A, = = AL =

53Ty (1 + <2/p2) rethor then 4 3 (o + oo ) (1 + rd/’be)

ag for the singlo-robsting rotor. ALl other paranwiesrs are whe sans

for both cases. ' ) -

The quentity &, win mt  can be Lnto:r'p eted physicelly =e

the x-compoment of the displacement of the center of gravity of the
bladss due to hinge deflsctions. The qu sntity My cos wt is the

covresponding y-component. ‘the asspayation of ‘the varisbles meens 2
physically, that the motion of tus syetem can be separated into two
indejpenient modes, each of wiick involves linser motion of the
supports along one of the principal stiffness axes.

Similarly, the sitehility of comuerrotabting rotor syatema of
Bix or more equal blades can he determined from the resulis of
roference L with Ky = o

CONCLUTSIONS

The following conclusions are indicated by the results of en
investigation of the problem of vibretion of a tivo-blade helicopter
rotor on supports thet have different auiff‘nesses along the TWO
principal stiffness xes:

1. Many specd rznges ars found in whick self-excitcd oscilla’bims
can occur. These cscillstions are of two types - self- exclited
vibration and self-excited whirling. There are =lso many speeds a.'l..
whilch stesdy-force-resonance vibration may occux.

2. The self-excited vibration, self-exclted whirling, and steady-

force resoncnce speeds of higliest rotor speed for sach support natural

frequency are recognized e3 corrvesponding to those of a two-blade rotor
o equal supports, but changed samewhat in position and ‘extent,
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3. Mild self-excited-whirling speed ranges exist at rotor spceeds
approximstely 1/3, 1/5, 1/7 end so forth of each support natural .
Trequency. Steady-force resonance apeeds exist at approximsiely
1/2, 1/, 1/6,end so forth of each support frequency. Self-excited
vibrations also occur at certain low rotor speeds. All thess mild
instebility renges are probably eliminated by the presence of
medsrate amounts of demping in the system.

4. A familiarity with typical results of limiting cases of the .
supporrb-spring copstents Ky oo, Ky = Kyy &nd Ky =0 showld
eneble s designer to avold extensive celculations of cases of unogual
support stiffness. In the general case of unequal suppoart stlffnoss,
the location and extent of the Instability ranges cen be found fairly
accurately by comsidering the problem as the supsrposition ol two
problems, one of finding sigmificant rotor speeds reforred to one
support frequency Kx7M ag roference frequoncy with Ky assunmod
infinite and the other of Finding the significant rotor aspeeds
referred. to the other suppert fraquency U@M a8 roferencs

freguency with K‘c cesumed zero.

. The enalysia of & four-blade counterrotating rotor systom in
which the rotors crogs slong the principal stiffness uxes of the
rotor supports leads to the seme oguations as thosc congldered for
the gpecial case of =, and the atability proportiecs aro givon

by tho invostigaticn of that speclal cese. :

Lengley Momorial Asronsuticel Leboratory .
National Advisory Committee for Acrcnauwtics "
Lengley Fiold, Va., July 22, 1946 : L
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a

8ng2 8012 and 80 forth

A-L_q BZ’ Cz

2 Bys Gy

o

Cn(wa)l Dn(ﬂ)e_): and
so fortn

D

Flog) = Mn  F (o)

IL—sp o
Falen) = e
Jsn, 8
J(w, )
k= EA'B - 1
K(w, /w)

- E(0), B(1), E(1/2)

Kis X5

iz, Ky

35
APPENDIX A
SYMBOLS

radial positlon of vertical hinge

elemen;:s of determinent dsfined in egquation
(16 ' :

Fourier coefficients in equation (12)

coxplex conjugotes of A3, By, and Cy,
respectively T

distance from vertical iiinge to center of
mass of blade . -

minors of the detorminate A (w,)

time-derivative operator (Ed-’?)

integers

function of F(w_ ) defined by equation (27)

function of ,/w defincd in equation (29)
functions defined by the relaticns (30)

functions defined by the relations (35)

soring conghbante of the rotor supports along
"the X~ and Y-directions, respectively



M

P(4),6(t),R(%)
P(4),6(4) R(t)

vy

Zf
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average stiffness of rotor supports

- Epring constend of blede solf-

centering spring
offective mass of rotor suprpbrts

maes of rotor blade

totael mess of two-blade rotor Bystem

(m +-2my,)
poriodic functions defined in egquetion (11)

camplex conjugates of P(t),Q(L), and R{t),

*‘espective ¥ .
- congtent defined in equetions (33)

-~ radius of gyration of blede about center of

Eass

-time

Hnetic energy
potential energy

detflection of rotor hub measured in
X,Y-cooriinate systen .

Tixed rectangular coordinate sxes taken
parallel to the principal stifiness
directions of the rotar Lub

complex posltion coordinste of the rotor
kub in rectengular coordinate system
- rotating with sngular velocity (x. + 1yy)

- complex conjugaete of z (X, - 1iF

-complex positian vector im X,¥- (nonrotating) o

coordinate system (x + J.y)

IM
1k

.
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By, Bo angular hinge deflections of rotor

blades, respectively
A discriminant of cubic eguation

% +DbxE rex + d =0

&(wg) determinant of infinite order defined
by equation (i6) ;

A {wg) determinsnt of order Gn - 3 formed
from A{wy)

00 = 2By + Ba)

b
95 =3By - B2)

A, =
- bil + .125)
'b2

e ) _
2
\ b
Ay = =
3 ofL 4 22
b2
& 1 §,0, a1 Mo tlade variebles for counterrotating rotor
3 mass rstio (E—I—?-
0 congtant angular velocity of rotor
W, characteristic exponent or natural frequency

of rotor syster as viewed in coordinates
rotating 2t angnlsax velocity o

c"a-;_ 2 Oy ’-ba3 principal values of ®_
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APPENDIX B
TERIVATION OF TEE CONVERGENCE FACTOR FOR K(0)

% convergence factor for K(O} is found by finding e simpler
Tunction Gn that caanges with n I1in nesrly the sams way as l‘x(o)n
Then, if G denotes 1lim G,, the expression

Do - B C L e

for & given value of n is s better approximetion to XK(0) tian

1s K(0), ealone. A suilteble form for G, 1s found fram a study

of the beuavior of K(O)n Tor large values of n. _

The behavior of X(0) n is strdied by firet observing the

behavior of Cn(O) end Ln(o) for large vzlues of n and then _
inferring the behavior of . K(0), fTrom eguation (32). In the A

discussion of equations (22) it was shown that, as n becomes

infinite, the ratio C +l/C approaches the value k {equation (923))

A closer aspproximation to the value of this ratic can be written as

C

n

10) _ . P
+o) kl—-ﬁ-l-iE | (B1)

whore P and Q are constants to be determined.

|

1

1)
I'.:l i

0

N

b I il
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Bquations (19) become, for o, =0,

_ _ )
C (0) = |1+ (—a—;;g——-f),,%iinn(o) -A_fnz: l) E,(0)

Aga? +A 22 o
A Ao b

Eps1(0) = i’*‘ (_gl?ifL——ii)a@] C,(0)

Dn+l(o) - r

1
[

-—

where the second term in the equation for En(cn&) in eguations (19)

nas been neglected as being of higher order in powers of 1/n then
the terms retained. BEliminating E(0) and D{0) £rom the
egquations (B2) results in

Cnt2(0) _ Ly 4 E/M g AP +A 1+ KM |
'3;(05 E‘+‘(2n+15’262][1+22n)%2] E'(en-l) ]
" 5 '

-1, &_1__£> e EM |
I\ on  (en+ 1)%R _
—
211_+12 K/M

.+<2n> ”l+(2n-1)_2m2

Upon expending thie expression into powers of l/n snd retaining
terms up to and including those in 1/n?

—y

Catl®) | o, . 2| IR zﬂﬁ(«»}é’z/}i 9‘ (23)
Cn(0) 37 (en)2 o2 N |

e

f—
|
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Camparing equation (B3) with equation (Bl) results in

=20

Ql%(l -A 3) +A.lf.€)2 +A2 + 2A3&)2
0)2(1. - 2.’\3)

Similarly

n+l( 0) = I:E— 9
“1,(0) (en)2_|

Therefore, Trom equations (32)

KOsy _ G_ -

Kence, en approximate valus of X(0) can be obtained from

EEQ_}_E K(0) .2 K(O) .o 'K(O)m3_
K(0)y  K(0)p K(C)y,1 X(O)pyo

<M2> sm-(-gﬁ) O

The right-hand sid.e of eguation (BW), which is seen to be of the form
G/G : 18 & convergence .factor._ This convergencs fe.ctor is the ome

used In eguetion (33).

i

-

i

i

—— aum
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APFENDIXY C

MATEEMATICAL ANALYSTS FOR TEE CASE OF K& = o

In terms of the varizbles 8p, B1, and x the expressions
Y are

for tihe kinetic and potential enerpy ar
i: + 2 \5 2 4 §.2 2 20642 + 6 \
. Iold-* =0 +°1 ) - @ o * 1
bhe / b
-25%(6, sin wt + 28, cos ot ]
( 1 L o0s ) |

K 2 2
V=—i:x2+ixgé +91)
2 be 0 -

The three squations of motion are

It
n [

+ (m%'\.l +4 2)60 =0 (c1)
3'c+—§-x-x - u———@-, gin 'm;) (C?,)
(c3)

- L B X ein ot + 8 +Gu2A +A2)9
1+ = .
(l 2 }
Bquations (C2)

Equation (Cl} is identical with egustion (7).
and (C3) constitute a system of two lines~ sacond-oidsy
differentlal equations with periodic coefracionis. :
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Equations (02) and (C3) are satisfied by solutions of the form U
o . -j . -
¥ = S Azei((’ﬂa"-kﬂ)t
1 =«
N (ck) -
N Cagr(241)a]
- 1) gl T4+1 ) B
8= ) Byi® |
l & - . ] o
_ : =
where 1 tekes on all odd integral velues end A; end B, 5 B
are cmsetants to, be determined 2lonz with tie two princinsl
values of @, Q@al and maz>. The constants A, =nd By,
in equations {Ch) are, of course, different from tiiose in (12). . I
Combining eqnations (Ch) with equatims (C2) and (C3) ana -
setting the coefficients of the vaerious exponentiasl time faciors .
oqual to zero - —
[
K, /M u
I 7 - ("Bz_l + Bl_[_]) = 0
Gn + lw)f 2t hE
— 2 M
j - 2
- - Ag_n + A
-2 1
211+~?—2—) l ]_r»a+(z-1)m o, + (1 - Lo
b2 . - ; - J
o ',-"‘ — -
| wPhy +hAo i -
+ X~ 1 + = By 0
2 -1
| [0 + (2 - 1) } -

Tho determinentel equation is then ecusl to ot
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a._3,_3 a_3’_2 0 0 o]
- a.-e’_3 8._2,_2 5_2’_1 0 O 0 0 . L 4
. e 0 &_1,-2 8.1,-1 8.1,0 0 0 0 .+«
-0 O &y, 3 80,0 %, O 0 -+ =A@g)=0
L) - O O O a-l,o al,l &1’2 O . . -
. 0 O O Q a-e,l a2,2 &2,3 [ L] -
. - O O o. ? (? a332 5.3:3 * e
where i
K./M A 2 A o
a _l + ____.';_/_______ a = "l ;LLD + 2
-33 (0g - 3w0)2 %P 2
Az we, + @Y 2
3,27 T2 LT\ o
[ - W\ 2 - 3 A3
a_3_3 = ""m'a' - a]_p -
= ofy +4p Bqq = -1 + /3 _
S S R CHEE
n
-3~-1 Wy - 20 12 2




bl L e mem e et T RN Nol 1R T
Ky /M  oPA 4 A
_ - — - ER, [ Mt
1T T Y g m w2 27 g ra)?
nap =

aea_a (d)a 4 35)2

A.

Wy = @\ 7 - _é.i'-' .
&0y1 % ( a.va) "3

. _ .- - Ex/M
oy ® -l 4 T TNE
; : : 33 T (a + W)F
2y .
[eu) Al +A.2 rx - .
Tre term -1 + — %112 bc taken as the origin of the
be -} . .

detorminant.

Define %(wa) ag-the determinant of arder Im-1 formed
by teking a square array from A{w,) centered en the origin. Then

Mw,) = 1im An(wa)- i
n— o :

Define auxiliary determinants from z;n(ena) as follows:

Cn(cba) determinant of order 2n-l1 consisting of the terms to
the right of and below the orlgin term

Dplw,) iqtemginght_ of oxder 2n-2 obteined from Cpla,)
) by omltting 1tes lasi row and colummn

Mn(caa) determinent of order on-2 obtained from Cn(coa)
by omitting lts first row snd column

N, (w, ) doterminant of order 2n-3 obtuined from Dn(“’e.)
by omitiing its first row end colurm )

The determinents Cp{w,) end Dn(cna) satisly the follow’ng
recurronce relatians:

%

A=

s
iy
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(—

Cplwg) =J‘ -1+
|

Aq

Ky /M

"5

'\

lz—_na-i-(’ﬂn—l)(aJ

E; + (on - l):b—%z )

a

e recurrence relstions (equations (C5) )

2 -tbf-i-(’;‘.‘l—a)ﬂ)!

—

>Dn(~0 )

un_*.-(cns‘)
|
> (c5)
2 { n-l(ma.)
_1 (C)a)
./

are algo satigfisd .
replacing C end D,

by M (w,) end Nylw,), with M end T
rospectively. The initial values are
K/

Cilwg) = -1 + —

(wg + w)=

H 1 ]’ . A

R e

<‘-°a. + ®)< l (g + 2m)= 2

Na(w,) = -1 +

(o, +

M?(ﬂ)&) =

(.‘.)2.}&.1 + .’\.2

z)2
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Expending 4A,(®,) in terms of the elements of the
column conbaining the origin gives

ANfwg) = | -1 o Cn{ -0y )Cnlwy )
{J.)a .....

W, - O\ + N2 )
- %3_ (i.......) Cp g M () - (E......) C,( -wa)Mn(waj
= CDa wa

As n becames infinite, or 28 w, becomes infinite, the

recurrence relations (squations (05)) approach _ _
N ) - Lo mTEE

A3
R
> (c6)

_ A3 |
Dy = ~Cp-1 =% Dpoa

e) ) L

Benations (0H) are satisfisd by & solution of the form .
o, = OKB y _ . N

i

(c7) -

Il

A
D, = --(3'@:-1——2'z K-t

vwhere k satisfies the equation - R
[} ", A 2
2 - (3 -4 3)k +:—I':1- =0 (c3)

Tae largsr root of equation (C3) will be denoted by k and the
smaller root by kj. Althouzh the complete solution of eguetion (c6)

is of the form n
= .
C, = Cx* + C‘;:l
for large values of n the term In ky dbocomss négligl;ble comparod
with the term in k.

R EIN

»
bl ol
gl
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Viith the same values for k, M, and N, will have solutions

gimilar to those of equations (C7). Thus as n becomes infinite
An(a)a) will vary as the quentity xen,

Define the function

An(wg)
F Yy = 13 hiy ) = 1im ———
((Da. n-—)mm n(w&. N kal

The function F(w,) is periodic in w, of period 2®, has

roots ‘.’:(cbali'asm) , i--fmaazt 25(1)), end second-order poles at (ma -_gem)

for all integral values of s. Furtihermore, F(a)a) approaches
the 1imit

+

E= lim Fo)=1LUn Fylo)

e n—>w
Conle) 12
= 1linm =
n-—y o kﬁl klz - k2 .

as o  becomes infinibe in a directlom otheyr then along the rsal axls.

a

Form the function

e,

o

I(w,) = Flog) ~= . . —(09)
lsin EDE') - sin2<m-3a—3>_] Ein"(i—% - singéi)a—@)‘{

L e L w/ N

The function J(w,) 1s an enalytic fumction of w®, everywhers.
Hence, by Liouville's theorem, J(cna) is a constant. By letting

®g—> + o along the imaginary axis, it is seen that J(w,) = -UE.
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Svbstituting -¥E for J{w,) into equation (C9) results in v

1n 220 )

> o en . _
— !. - , —T
L . of Ta\ _ s n ) o 92\ |
- Lf“<m> 1 m)] [“‘ (o)
E
sin” :-—?'->

LS

il

[

i

Introducing XK functions defined similarly to those used for
the case Ky =0 gives

|
Ey = sin2 R sin2
w
sine(ai) F(fua)
= lim =
wg—3 O -~ 4B
N (c10) )
of ®ay o/, d
— 1;2 = cos cos”~ l
| =
. ‘-'—'r M
rm
sin _ﬁ' I‘(wa)
lim
wg—>w |

Carrying out the limit procosses indicated iﬁ eguations (Cl0) gives
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Kl =n—lim:o Kln
—

#(02hy +Ap)en2(0) - A3nPuCn(0)Nn(0)

= lim
n— o “ho2 Cope)
Ky = Lim K,
n-—— 0 11
- A -7
. “2 Ex 1N 2(_0)) l
M n
= 1im

Finally, upon introducing appropriate convergence Tactors,
the quentities needed in eguation (35) sre L

R—— —

Kl=lim

—— O 282—:17- 5'22
== 22T (- )
J

whers ' .

i;;"-i-cu?af\.l-e-Ag-i.-a)é(l-i‘k-:l-k)

o?(x - k)
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